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Surge instability on a cavitating propeller
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This study details experiments investigating a previously unrecognized surge instability
on a cavitating propeller in a water tunnel. The surge instability is explored through
visual observation of the cavitation on the propeller blades and in the tip vortices.
Similarities between the instability and previously documented cavitation phenomena
are noted. Measurements of the radiated pressure are obtained, and the acoustic
signature of the instability is identified. The magnitudes of the fluctuating pressures
are very large, presumably capable of producing severe hull vibration on a ship.

The origins of this instability are explored through separate investigation of the
cavitation dynamics and the response of the water tunnel to volumetric displacement
in the working section. Experiments are conducted to quantify the dynamics of
the propeller cavitation. Finally, a model is developed for the complete system,
incorporating both the cavitation and facility dynamics. The model predicts active
system dynamics (linked to the mass flow gain factor familiar in the context of pump
dynamics) and therefore potentially unstable behaviour for two distinct frequency
ranges, one of which appears to be responsible for the instability.

1. Introduction
Experimental experience and theoretical analyses have revealed that the adverse

effects of cavitation are often augmented under unsteady flow conditions. The fluctu-
ations of the cavitation volume on a ship’s propeller, for example, can cause severe and
often structurally damaging vibrations of the hull at the aft end of the ship. Because
of this and related problems in pumps, turbines, and other potentially cavitating
devices, there is a clear need to understand unsteady phenomena and instabilities
connected to cavitating flows.

One such phenomenon is the partial cavity instability on a single hydrofoil or
cascade of hydrofoils (Wade & Acosta 1966; Franc & Michel 1988; Le, Franc &
Michel 1993; de Lange, de Bruin & van Wijngaarden 1994). The behaviour of
hydrofoils subject to forced oscillation in pitch about a spanwise axis has also been
the subject of much research. Many investigators (Shen & Peterson 1978; Franc &
Michel 1988; Hart, Brennen & Acosta 1990; Soyama, Kato & Oba 1992; McKenney
& Brennen 1994; Reisman, Wang & Brennen 1998) have examined the periodic
formation and collapse of clouds of cavitation bubbles on the suction surface of
hydrofoils or pump blades and the very large transient pressure pulses and severe
structural damage that can result.

Until very recently, the great majority of this work focused on the behaviour of
two-dimensional, unswept hydrofoils. However, the recent observations of attached
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cavities on hydrofoils with sweep by S. Jessup (1997, personal communication) and
Laberteaux & Ceccio (1998) have identified some notable differences between the
cavitation on swept and unswept hydrofoils and these will be referred to below.

Implicitly assumed in many of these investigations is that the phenomena observed
within the laboratory facilities accurately reflect the cavitation behaviour of devices
operating in more open conditions. Only a few studies (Shen & Peterson 1978;
Kjeldsen et al. 1999) have considered the interactions between the dynamics of the
unsteady cavitation and the dynamics of the surrounding experimental facility.

This is not the case for cavitating pumps, where for some time the dynamics of the
pump cavitation and the response of the surrounding facility have been known to
interact with very dramatic consequences, including the catastrophic POGO instability
observed in liquid-propelled rockets. A great deal of research has therefore been
focused on quantifying the cavitation dynamics involved in oscillations of this nature.
A relatively consistent approach has been adopted, with efforts aimed at developing
a transfer matrix characterizing the relationship between the fluctuating pressure and
mass flow rate at the pump inlet and the same quantities at discharge. This transfer
matrix summarizes the dynamic behaviour of the pump, including the cavitation.
In determining the elements of this transfer matrix, two important parameters were
identified. The cavitation compliance models the effective compressibility of the
cavitating flow between the inlet and outlet (Brennen & Acosta 1973) and was shown
to play an important role in several observed hydraulic system instabilities. A second
factor, the mass flow gain factor, represents the response of the cavitation to variations
in the inlet mass flow rate (Brennen & Acosta 1976). It was later demonstrated
(Brennen 1978; Tsujimoto, Kamijo & Yoshida 1993) that this parameter, for which
a typically positive value implies an increase in cavitation volume with decreasing
inlet mass flow rate, is a key factor in sustaining instabilities in cavitating pumps.
One such instability is the ‘auto-oscillation’ of cavitating inducers, in recent years
renamed cavitation surge (Braisted & Brennen 1978, 1980). The first attempts to
experimentally measure the mass flow gain factor as well as the cavitation compliance
and the other components of the transfer matrix were made by Ng & Brennen
(1978), with more precise measurements later obtained by Brennen et al. (1982). More
recently, the frequency dependence of the mass flow gain factor has been explored
theoretically by Otsuka et al. (1996).

The majority of investigations exploring the unsteady cavitating behaviour of
propellers as opposed to pumps has focused on the consequences of the varying
inflow encountered by a propeller blade as it rotates through the irregular wake
behind a ship hull. Huse (1972) was the first to explore the resulting variations
in cavity volume and their effect on the pressures radiated by the cavitation. The
amplitude of the pressure fluctuations and the induced vibrations of the ship hull
were found to be orders of magnitude greater than for the case of steady cavitating
flow. An excellent summary of the large body of work focused on the propeller–
hull vibration problem is offered in Weitendorf (1989). A discussion of the various
unsteady cavitation structures that can result from the irregular wake is presented
by Bark (1986). McKenney (1995) explored the unsteady flow field encountered by a
yawed propeller and its effect on tip vortex cavitation.

Few if any cavitating propeller investigations have adopted an approach similar to
the cavitating pump analyses and explored the possible interaction between unsteady
propeller cavitation and the dynamics of the surrounding environment. The goal of
this work is to utilize concepts garnered from general unsteady cavitation research
and extend several more specific concepts from investigations of cavitating pump in-
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Figure 1. Photograph of stable cavitation with the propeller operating upstream of the fairing at
zero yaw angle, n = 28.3 Hz, J = 0.68, and σ = 0.19.

stabilities to describe and explain a previously unobserved cavitation surge instability
on a propeller.

2. Propeller cavitation surge observations
A 190.5 mm diameter model propeller typical of the modern designs used by the

US Navy was installed in the Low Turbulence Water Tunnel (LTWT) at Caltech
(Gates 1977) using a transverse shaft and gear box taken from an outboard motor
(see figure 1 and McKenney 1995). The fairing around the shaft and gearbox was
quite streamlined. The entire assembly could be rotated about its base so as to operate
the propeller either upstream or downstream of the fairing.

Experiments began with the propeller mounted upstream of the fairing, as shown
in the photograph of figure 1. Later, when the propeller was operated downstream
of the fairing, a violent surge instability was observed to occur in certain regimes
of operation. The instability was characterized by a periodic increase and decrease
in the extent of cavitation both on the propeller blades and in the tip vortices shed
downstream. This fluctuation in cavitation extent was readily apparent to the naked
eye, and occurred evenly and synchronously on all blades and at all angular locations.
Apart from the variation in cavity extent associated with the instability, the cavitation
was observed to be steady. In particular, no periodic shedding of cloud cavitation
was observed. If such a variation in cavitation behaviour did occur, it was either of
too small an amplitude or too high a frequency to be detected by the observational
methods employed.

The pressure fluctuations resulting from the instability were dramatic, easily audible
to the unaided ear, and propagated throughout the surrounding experimental facility.
The instability was observed across the range of propeller rotation speeds at which
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Figure 2. Four frames taken from a high-speed video, showing the variation in cavitation on an
individual propeller blade during the instability cycle. The number in the lower left corner of each
frame, τ, indicates the fraction of the instability cycle elapsed. The white arrow indicates the front
of the re-entrant jet.

cavitating conditions could be achieved, n = 28.3–31.7 Hz. The frequency of the
fluctuation was repeatable and in the range f = 9–11 Hz. The variation of the
fluctuation frequency with the basic flow parameters is discussed in greater detail in
Duttweiler (2001).

2.1. Visual observations

Figure 2 presents selected frames from high-speed video footage of the instability on
the cavitating propeller. The number in each frame corresponds to the fraction, τ, of
the instability cycle elapsed. The beginning of the instability cycle is chosen arbitrarily
to coincide with the minimum cavitation extent. This condition, as seen in the first
frame of figure 2, is characterized by a relatively small region of bubbly cavitation
along the leading edge of the propeller blade.

Further into the instability cycle, at τ = 0.25, the cavity has grown substantially
towards the trailing edge of the propeller blade. A re-entrant jet becomes distinguish-
able as it is swept back from the leading edge, its forward front indicated by the white
arrow. The cavity reaches its maximum extent at approximately τ = 0.70. At this
stage of the instability cycle, a supercavitating condition occurs when the cavity near
the tip of the propeller blade extends downstream of the trailing edge of the blade. As
this cavitation is entrained into the tip vortices it leads to a readily observed increase
in the diameter of the vortices shed downstream of the propeller. No re-entrant
jet is visible at this point in the cycle, presumably because the re-entrant jet fluid,
directed upstream, has been overwhelmed by the unsteady downstream component
of the flow, and has consequently been swept downstream past the cavity closure
region.

By τ = 0.92 the cavitation has begun to decrease in extent, receding towards
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the leading edge of the propeller blades. The re-entrant jet can again be observed,
indicated by the white arrow, as it begins its rush forward within the cavity towards
the leading edge of the propeller. When the re-entrant jet reaches the leading edge
at nearly all spanwise locations, the cavitation returns to the minimal configuration
shown at τ = 0.00.

While no record of an instability of this nature could be found in the literature, the
nature of the cavitation in figure 2 exhibits some similarities to observations made
by previous investigators characterizing the cavitation on three-dimensional, swept
hydrofoils. In particular, S. Jessup (1997, personal communication) and Laberteaux
& Ceccio (1998) noted that the re-entrant flow on swept hydrofoils was not directed
upstream as in the case of a similar unswept hydrofoil, but was instead obliquely
inclined to the line of cavity closure. Furthermore, they observed that the cavity
closure downstream and outboard of the location where the re-entrant flow impinged
upon the leading edge of the hydrofoil was rough and unsteady. A similar effect can
be seen in the second image of figure 2, where the cavitation is particularly frothy
downstream and outboard (above and to the left) of the point at which the re-entrant
jet reaches the leading edge.

Also evident from figure 2 are similarities between the instability cycle and the
well-documented partial cavity instability observed on two-dimensional hydrofoils
(Wade & Acosta 1966; Franc & Michel 1988; Le et al. 1993; de Lange et al. 1994).
First, the cavity length on the propeller blade is fluctuating between two very different
but consistent values. Furthermore, the cavity lengths about which the fluctuation
occurs are comparable to the chord length, c, of the propeller blade. Finally, the
frequency, f, of the fluctuation is quite low. Wade & Acosta (1966) reported reduced
frequencies, k = fc/U, based on chord length and incoming flow velocity, U, in the
range k = 0.07–0.14. Le et al. (1993) and de Lange et al. (1994) encountered somewhat
higher values of approximately k = 0.34. If reduced frequencies for the propeller based
on chord length and incident velocity are computed at various radii, values of the
order of k = 0.07 are obtained. These are consistent with the range reported by
Wade & Acosta (1966), but somewhat lower than the value reported by the other
investigators.

2.2. Pressure measurements

To further quantify the instability, pressure measurements were taken using a pressure
transducer flush-mounted in the floor of the water tunnel test section, approximately
level with the propeller in a streamwise direction and 15 cm below the axis of propeller
rotation. A typical signal obtained from the floor-mounted transducer is shown in
figure 3(a). The signal is clearly periodic, with a frequency corresponding to the
frequency of cavitation variation observed visually. The magnitude of the pressure
fluctuations produced by the instability was as high as 15–20 kPa, at least one order
of magnitude higher than the cavitation noise radiated under stable conditions. These
pressure oscillations were strong enough to be readily heard in the laboratory and to
shake the test section violently.

Shown in figure 3(b) is an average of several power spectral densities of the
pressure fluctuations generated by the instability. Clearly visible at approximately
10 Hz is the fundamental frequency of the instability, dominating the instability noise
by a margin of approximately 15 dB. Many harmonics can also be seen. The blade
passage frequency for the six-bladed propeller rotating at n = 30.0 Hz is also clear as
are two beat frequencies at 170 Hz and 190 Hz.
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Figure 3. (a) Typical pressure measurements obtained from the floor-mounted pressure transducer
during the instability. The signal was low-pass filtered at 2 kHz. (b) An average power spectral
density obtained from several such signals.

2.3. Onset of instability

Experiments were also conducted exploring the onset of the instability in the exper-
imental space defined by two dimensionless parameters commonly encountered in
cavitating propeller experiments – the cavitation number, σ, and the advance ratio, J ,
defined as

σ =
pt − pv
1
2
ρU2

tip

, J =
Ut

nD
, (2.1)

where pt is the test section pressure, pv the vapour pressure of water at the test section
temperature, ρ the water density, Utip the tip speed of the propeller blades, Ut the test
section flow speed, n the propeller rotational rate, and D the propeller diameter.

The onset of the instability was difficult to define precisely. However, if spectra were
obtained at decreasing cavitation numbers, a transition in the spectra was observed
between a dominant peak near f = 14 Hz (as yet unexplained) to a value near
f = 9 Hz. This growth of the lower frequency peak, which corresponded very closely
with the visually observed inception of unstable behaviour, was utilized in defining
the onset of instability. Following this onset, the frequency of the dominant peak
remained constant with increasing intensity of the instability.

Figure 4 summarizes the onset of the instability in an advance ratio and cavitation
number map. The unstable operating conditions are concentrated at advance ratios
below the design advance ratio of Jo = 1.15, and at lower cavitation numbers. Some
insight regarding the onset of the instability can be gained by considering following
argument. Studies of two-dimensional foils, for example by Tulin (1953) (see also
Brennen 1995), have shown that the non-dimensional cavity length, l/c, is essentially
a function of the ratio, α/σ, of the angle of attack of the hydrofoil, α, to the cavitation
number, σ. Based on purely geometric arguments, the angle of attack in the vicinity
of a propeller blade tip is approximately proportional to the difference, Jo − J ,
between the design advance ratio and the operating advance ratio. Thus a particular
configuration of cavity lengths on the propeller should correspond to a particular
value of the parameter ξ = (Jo − J)/σ.

Several lines of constant ξ are plotted in figure 4 where it is clear that the
transition between stable and unstable behaviour corresponds quite closely to the
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Figure 4. Occurrence of the instability in a cavitation number and advance ratio map. Each
operating point is classified as stable (×), unstable ( e), or marginally stable (⊗). The propeller
rotation speed in this case was n = 30.8 Hz. The dashed lines (– –) are for different values of the
parameter ξ, and correspond to the stability criterion discussed in the text.

particular value of ξ = 2.0. Thus the instability boundary corresponds to a particular
configuration of cavity lengths on the propeller blade. This confirms the connection
with the partial cavity instability observed on two-dimensional foils, where stability
was also related to the ratio of cavity length to chord.

2.4. Modelling the instability pressures

As suggested by Fitzpatrick & Strasberg (1958) and Huse (1972), the far-field pressure
from a fluctuating cavity volume will be dominated by the volumetric acceleration
imposed upon the flow. Specifically,

p̃ ∼ d2Ṽcav

dt2
, (2.2)

where p̃ is the fluctuating far-field pressure and Ṽcav is the fluctuating cavity volume.
This volumetric acceleration was determined from direct measurements of the cavity
volume throughout the instability cycle in the following way. High-speed video footage
similar to that shown in figure 2 was obtained, and synchronized by a timing pulse
with measurements from the floor-mounted pressure transducer. Frames of the video
footage were then digitally captured and analysed. In each frame, the cavitation extent
varied substantially with radial location, but was most easily characterized by the
maximum value of a cavity length, l, measured normal to the leading edge. From
this cavity length measurement, an estimate of the cavity volume was obtained by
following the suggestion of Blake (1986) that Vcav ∼ Rl2, where R is the propeller
radius.

A finite difference method was then applied to the cavity volume estimates to
determine the second time derivative of cavity volume and therefore the volumetric
acceleration imposed upon the flow. Figure 5 shows the results of this calculation
and a comparison with the pressure measurements obtained from the floor-mounted
transducer. Note that the qualitative agreement between the two is very good even in
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Figure 5. A comparison between the signal from the floor-mounted pressure transducer low-pass
filtered at 200 Hz (——) and the second time derivative of the measured cavity volume (– –). The
vertical scales are arbitrary.

some of the higher frequency details. However, we also note that the vertical scales
in figure 5 have been arbitrarily chosen to facilitate the comparison. As will be seen,
quantitative comparison requires detailed knowledge of the response of the facility.

3. Facility dynamics
To estimate the amplitude of the pressure fluctuations generated by the instability,

a model is needed to describe the response of the system to the fluctuating flow
rates and pressures produced by the cavitating propeller. One very simple approach
would be to model the propeller cavitation as a monopole source from which the
generated pressures decay as r−2, where r is the distance from the cavity. This proved
wholly inadequate in predicting the amplitudes of the pressures observed at the floor-
mounted transducer. To fully understand the pressures generated by the instability,
a model is needed that will incorporate the effect of the dynamic response of the
experimental facility.

3.1. Lumped parameter system impedance

In developing the model, it is assumed that the facility responds linearly to the
perturbations in the flow conditions; nonlinear considerations are currently beyond
our capability. Accordingly, the quantities of interest are expressed as a linear combi-
nation of a mean component and a fluctuating component of frequency ω. The mass
flow rate and the resulting total pressure are therefore denoted by

m = m̄+ Re[m̃e jωt], pT = p̄T + Re[p̃T e jωt], (3.1)

where m̄ and p̄T are the time-averaged mass flow rate and total pressure. The
fluctuating components m̃ and p̃T are complex, in order to incorporate both the
amplitude and phase of the fluctuations.

The dynamics of the facility can be characterized by considering the response of
the facility to a fluctuating mass flow rate, m̃e, injected at some specific location e in
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Figure 6. Schematic of facility and cavitation dynamics.

the system (figure 6). We define a system impedance,

Z =
p̃Te
m̃e
, (3.2)

where, in general, Z is complex, and its value depends on the location of the excitation
point, e.

To develop a specific expression for the system impedance, Z , we employ a lumped
parameter approach, dividing the experimental facility into smaller components for
which expressions can be written relating the fluctuating quantities at the component
inlet and outlet. It is then apparent that each component exhibits resistive, inertive,
or compliant behaviour, or a combination thereof.

Utilizing such an approach, the facility dynamics are characterized by (i) the
compliance, Cot, of the overflow tank that allows control of the pressure within the
facility and therefore has the only deliberate free surface, (ii) the resistance, Rc, and
inertance, Lc, of the pipe leading from the tunnel to this overflow tank, (iii) the
compliance, Ct, associated with the expansion and contraction of the walls of the
tunnel, and (iv) the resistances, Rtu and Rtd, and inertances, Ltu and Ltd, associated
with the typical flow paths leading upstream and downstream, respectively, from
the point of excitation to the location of the expanding and contracting walls. The
resulting model is shown in figure 6. Further details of this analysis are given in
Duttweiler (2001). It is necessarily a crude approximation to what is a much more
complex dynamic system, but it appears to contain all the elements required for
present purposes.

Parenthetically it is noted that the propeller used to drive the flow of the water
tunnel was found not to contribute to the dynamic model. This was determined by
noting that many of the experiments were conducted without the tunnel propeller
being activated and that there was no discrepancy between the observations with and
without an active tunnel propeller. This may be explained by noting that the propeller
‘resistance’ at the low rotation speeds at which it operates is small compared with the
resistances elsewhere within the facility.

Several of the lumped parameters within the facility dynamics model can be
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Figure 7. Deflection of tunnel walls in response to static changes in the tunnel pressure, pt, relative
to an initial tunnel pressure, pto. (a) The deflection of a front test section panel: at the panel centre
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(b) The deflection of the tunnel end wall near the downstream turning vanes: close to a supporting
flange ( e) and at two more distant points (�, 4).

evaluated directly from measurements of the experimental facility. The overflow tank
compliance is composed of contributions from the motion of the free surface and the
compression of the sealed volume of air above the free surface, so that

C−1
ot =

{
Āot

g

}−1

+

{
ρV̄ot

p̄otk

}−1

= C−1
fs + C−1

sv , (3.3)

where Āot is the area of the free surface of the overflow tank, g is the acceleration due
to gravity, and V̄ot, p̄ot and k are the unperturbed volume, pressure and polytropic
constant of the air volume above the overflow tank free surface. The connecting
pipe inertance, Lc, can be evaluated directly from the connecting pipe length and
area. Similarly, the tunnel inertances, Ltu and Ltd, can be estimated by considering
the length and varying cross-sectional area of the typical flow paths between the
excitation point and the tunnel compliance.

The remaining parameter, the tunnel compliance associated with the expansion
and contraction of the tunnel walls, is difficult to evaluate directly, but can be
estimated by measuring the quasi-static response of the tunnel walls to changes in
internal pressure. Figure 7 shows the results from such an experiment. Clearly the
deflection varies greatly with location. It is probable that other locations around the
tunnel exterior, where material, and size, shape and extent of reinforcement vary
widely, would also show similar variation. Nonetheless, it is possible to estimate from
figure 7 a range of values for the tunnel compliance. Considering the definition of the
compliance,

Ct
.

= ρ
dVt
dpt

= ρ
dVt
ds

ds

dpt
, (3.4)

where ds/dpt is the slope of figure 7, and dVt/ds is simply the surface area of the
tunnel. Estimating the latter to be 75 m2, we judge that

7.5× 10−5 m s2 6 Ct 6 1.5× 10−3 m s2. (3.5)
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3.2. Natural frequency experiments

Neglecting the resistive components in the system, the impedance at the point e of
figure 6 just downstream of the cavitating propeller is given by

Z =
j(LcCotw

2 − 1)(LtCtw
2 − 1)

w[(Lc + Lt)CotCtw2 − Ceq] , (3.6)

where Ceq = Cot + Ct. Consequently, the natural frequency of the system is given by
the pole of equation (3.6),

ωo =

{
Ceq

(Lc + Lt)CotCt

}1/2

. (3.7)

The estimated values of the lumped parameters indicate that Lc � Lt, and thus

ωo ≈
{

1

Lc

(
1

Cot
+

1

Ct

)}1/2

=

{
1

Lc

(
g

Āot
+
p̄otk

ρV̄ot
+

1

Ct

)}1/2

. (3.8)

Inspection of this equation (Duttweiler 2001) revealed that the natural frequency is
dominated by the tunnel compliance. This is confirmed in figure 8, which shows the
natural frequency predicted by equation (3.8) as a function of overflow tank pressure.
Also shown in figure 8 are experimentally determined natural frequencies, found by
perturbing the system pressure with a rapid valve closure and then monitoring the
resulting pressure fluctuations.

The curve corresponding to the tunnel compliance value of Ct = 2.9× 10−4 m s2 is
in good agreement with the experimentally determined natural frequency at higher
overflow tank pressures. However, the calculated natural frequencies do not show the
same degree of variation with overflow tank pressure as exhibited by the experimental
data. This suggests that the tunnel compliance may not be constant as the pressure
is varied.

3.3. Forced response experiments

The proposed model for the system impedance can be further assessed by exper-
imentally measuring the response of the facility to a volumetric excitation. This was
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achieved using an oscillating piston setup (see Duttweiler 2001), where the output
from the piston (bore diameter 38 mm) was directed through an essentially rigid
pipe into the test section. The resulting pressure fluctuations were measured using a
transducer mounted in the ceiling of the test section approximately 0.51 m upstream.
Figure 9 shows the system impedance determined from these pressure measurements,
at various excitation frequencies and piston strokelengths, |x̃p|. Figure 10 presents the
data at higher frequencies.

Also shown in figure 9 is the prediction of the model, which accurately captures the
minimum in the experimental response at approximately f = 0.2 Hz, corresponding
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to the zero of equation (3.6) at

ωz =

{
1

LcCot

}1/2

. (3.9)

Since this line in figure 9 is generated using the value of the tunnel compliance
determined from the natural frequency experiments, it is not surprising that the model
also accurately captures the resonant behaviour at approximately 0.5 Hz. Finally,
the model also captures the minimum at higher frequencies, shown in figure 10,
corresponding to the second zero at

ωz =

{
1

LtCt

}1/2

. (3.10)

Note that since Ct has already been determined from the natural frequency ex-
periments, this relation only contains one unconfirmed quantity, namely the tunnel
inertance, Lt. Figure 10 includes model results for several different values of Lt all of
which are in a range consistent with the water tunnel geometry.

Experiments were also conducted to measure the phase of the pressure fluctuations
induced by the oscillating piston (see Duttweiler 2001). As would be expected, both
the experimentally determined phase and the predictions of equation (3.6) exhibit
phase transitions at the low-frequency zero and again at resonance.

4. Cavitation dynamics
The preceding experiments demonstrate that the test section flow conditions will

respond to the volumetric excitations imposed by a fluctuating cavity volume in the
tunnel test section. Yet, the cavity volume itself responds to changes in the test section
flow conditions. Clearly then, the cavitation dynamics and facility dynamics must be
considered as part of a coupled system.

Essential to understanding these coupled dynamics is determining how the cavity
volume responds to changing inlet conditions. As described earlier, analytical studies
of two-dimensional hydrofoils show that the non-dimensional cavity length, l/c, is
approximately a function of the ratio of the effective angle of attack to the cavitation
number, α/σ. Furthermore, since as proposed by Blake (1986) the cavity volume on
a propeller blade is proportional to the propeller radius and the square of the cavity
length, the total cavity volume is also approximately a function of the ratio α/σ.

Consideration of the flow incident upon a propeller blade reveals that the effective
angle of attack, α, is given by α = αo − arctan(Ut/Utip) = αo − arctan(J/π), where αo
is the geometric angle of attack. It follows, then, that at a given propeller speed, the
effective angle of attack α is determined entirely by the mass flow rate, mt, approaching
the propeller. The cavitation number is determined entirely by the test section pressure,
pt. It is therefore appropriate to express the variation in cavity volume with α and
σ in terms of a cavitation compliance K = −ρ(dVcav/dpt)mt and a mass flow gain
factor M = −ρ(dVcav/dmt)pt (Brennen 1994). To effect this, it is convenient to recast
these dynamic characteristics in terms of the parameters more frequently used in
cavitating propeller experiments, namely the advance ratio, J , and the cavitation
number, σ:

K
.

= −ρ
(

dVcav
dpt

)
mt

= − 2

Ω2R2

(
dVcav
dσ

)
J

, (4.1)

M
.

= −ρ
(

dVcav
dmt

)
pt

= − π

AtΩR

(
dVcav
dJ

)
σ

, (4.2)
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Figure 11. Cavity volume on propeller blades at intermediate rotation speed (n = 28.3 Hz). The
grey scale on the right indicates the cavitation volume in m3. The lines in the map are lines of
constant ξ as indicated.

where Ω = 2πn is the radian frequency of the propeller rotation, R is the radius of
the propeller, and At is the test section cross-sectional area.

It is valuable to determine quasi-static values for K and M using experimental data
for the cavity volume as a function of J and σ. Figure 11 shows the results from such
a set of experiments. Since, as argued in § 2.3, the cavity length is essentially a function
of the parameter ξ = (Jo − J)/σ, it follows from the suggestion of Blake (1986) that
the cavity volume will also be a function of this single parameter. Accordingly, several
lines of constant ξ are plotted in figure 11. The good correspondence between lines of
constant ξ and the experimentally determined contours of constant volume support
the assertion that the cavity volume is indeed largely a function of the parameter ξ. It
is therefore convenient to fit the cavity volume to a function of the form Vcav = h(ξ).
Choosing a second-order polynomial h(ξ) = aξ2 + bξ + c, equations (4.1) and (4.2)
yield

K =
2

Ω2R2σ
(2aξ2 + bξ), M =

π

AtΩRσ
(2aξ + b), (4.3)

where a = 0.86× 10−5 m3 and b = −1.2× 10−5 m3.
To facilitate comparison with results obtained by previous investigators exploring

the unstable behaviour of cavitating pumps, the dynamic cavitation parameters are
non-dimensionalized by

K∗ =
Ω2K

R
, M∗ = ΩM. (4.4)

It is also necessary to account for the fact that, in the case of a cavitating pump, the
mass flow gain factor is based on the mass flow rate entering the cross-sectional area
of the pump. In contrast, the definition of equation (4.4) is based on the mass flowing
through the cross-sectional area of the entire test section. For appropriate comparison,
an adjustment is necessary, increasing the mass flow gain factor computed for the
propeller by a factor of η = At/Ax, the ratio of the test section area to the area of
the propeller disc.
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After this adjustment, the ranges of the dimensionless cavitation compliance and
dimensionless mass flow gain factor are determined to be K∗ = 0.0–1.4 and M∗ =
0.05–0.20 for the advance ratios and cavitation numbers investigated at n = 28.3 Hz.
At n = 31.7 Hz, these ranges increase slightly to K∗ = 0.0–1.6 and M∗ = 0.0–0.4.
For comparison, in the first estimate of these dynamic parameters for a cavitating
inducer, Brennen & Acosta (1976) obtained values in the ranges of K∗ = 0.05–0.2 and
M∗ = 0.6–0.8 for cavitation numbers above σ = 0.02. Experimental measurements by
Brennen et al. (1982) for cavitating inducers at σ = 0.2 yielded a larger typical value
of K∗ = 0.25, but similar values of M∗ = 0.6. More recently, theoretical studies by
Otsuka et al. (1996) examined the potential frequency dependence of K∗ and M∗. At
low frequencies and σ = 0.17, they obtained values of the order of K∗ = 0.06 and
M∗ = 0.6. All of these values are in reasonable agreement with the current work, since
differences would be expected given the geometrical differences between propellers
and pumps.

5. Facility and cavitation dynamics
The inclusion of the cavitation dynamics significantly alters the character of the

overall system dynamics. The nature of this change is most clearly illustrated by
considering a simplified system consisting only of a source of fluctuating mass flow
rate and the cavitation dynamics discussed in § 4. If the outlet of the propeller is
assumed closed to fluctuations in mass flow rate, then the impedance of this system
is given by

Z =
1− jωM

jωK
and Re[Z] = −M

K
. (5.1)

Equations (4.3) and figure 11 indicate that the cavitation compliance and mass flow
gain factor are both positive. Therefore, this simplified system is characterized by a
negative value of the real part of the system impedance, Re[Z].

While a positive value of Re[Z] would imply the removal or dissipation of fluc-
tuation energy from the system, a negative value of Re[Z] implies the insertion of
fluctuation energy. If this rate of insertion of fluctuation energy is greater than the
dissipation elsewhere in the system, the fluctuating quantities will grow in amplitude,
and instability ensues. Accordingly the system is a potentially active one in that it
is capable of sustaining fluctuations without an external input of fluctuation energy,
instead extracting the fluctuation energy from the steady flow. This is in accord with
the view of other investigators such as Brennen (1978) and Tsujimoto et al. (1993)
who characterize cavitating pump instabilities as essentially arising from a positive
mass flow gain factor.

The effects of this behaviour on a more complete model incorporating both the
facility and cavitation dynamics can be seen by considering the model presented
earlier in figure 6. The system impedance for the location e is

Z =
(LtCtω

2 − 1)Zc

jLtCt{ZcK −M}ω3 − LtCt
{
ZcM

Ltu
− 1

}
ω2 + j{M − Zc(Ct +K)}ω − 1

, (5.2)

where L−1
t = L−1

tu +L−1
td , and Zc is the impedance of the connecting pipe and overflow

tank,

Zc = jωLc + Rc +
1

jωCot
. (5.3)
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Figure 12. Real part of system impedance, Z , for the combined facility and cavitation dynamics
model. Shown are the results of the full model of figure 6 (——) and a simplified model neglecting
the overflow tank and connecting pipe dynamics (– –).

Figure 12 plots the real part of this system impedance as a function of frequency.
In generating this plot, values of K = 5.9 × 10−6 m s2 and M = 5.9 × 10−4 s were
obtained from equations (4.3). The value for the tunnel compliance, Ct = 5×10−3 m s2,
was chosen based on figure 8 and the reduced overflow tank pressure, pot = 18 kPa,
required to obtain cavitating conditions. The estimates of § 3.1 were used to evaluate
the remaining parameters, though the resistive effects have initially been omitted
from the calculation. Curves are generated for the system of figure 6 as well as for
a simplified system without the connecting pipe and overflow tank dynamics. This
simplified system corresponds to that shown in figure 6, with the removal of the
branch leading to the overflow tank compliance, Cot.

Immediately apparent from figure 12 is that the real part of the system impedance
is negative over two frequency ranges centred at approximately f = 0.12 Hz and
f = 25 Hz. The active nature of the cavitation dynamics exemplified by equation (5.1)
is still evident, but with the addition of the facility dynamics the positive activity
has been limited to these two frequency ranges. The unstable region around 0.12 Hz
corresponds to the natural frequency discussed in § 3.2, the low value of 0.12 Hz
resulting from the increased value of the tunnel compliance associated with the
reduced test section pressures required to obtain cavitating conditions. As would be
expected, the curve generated for the simplified system does not exhibit this trough.

The trough at f = 25 Hz therefore seems a probable explanation for the propeller
instability. At this frequency, the combination of facility and cavitation dynamics re-
sults in the creation of fluctuation energy and therefore potentially unstable behaviour
of the cavitation on the propeller. However, there is a large discrepancy between the
frequency of this trough and the typical experimentally observed instability frequency
of f = 10 Hz.

Since both the full and simplified models exhibit similar behaviour through this
second trough, it is appropriate to further analyse this behaviour by considering only
the simplified system. The impedance of the simplified system is given by

Z =
LtCtω

2 − 1

jω{LtCtKω2 + j{Lt/Ltu}CtMω − (Ct +K)} . (5.4)
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A reasonable approximation of the pole location of this impedance is

ωo =

{
Ct +K

LtCtK

}1/2

(5.5)

and, since Ct � K , the pole is essentially determined by

ωo =

{
1

LtK

}1/2

. (5.6)

The location of the pole given by this expression is very nearly the location of the
trough in the real part of the system impedance shown in figure 12.

As an aside, equation (5.6) can also be applied to cavitating pumps and helps explain
the experimental observation of Brennen (1994) that the auto-oscillation frequency for
many different impellers is roughly proportional to σ1/2. Since K is roughly inversely
proportional to σ (Brennen et al. 1982), the predicted auto-oscillation frequency will
be proportional to σ1/2.

Now consider further the discrepancy between the instability frequency and the
predicted instability frequency given by the trough in figure 12. It is important to note
that this frequency is obtained using a cavitation compliance that is in turn based upon
a rather crude approximation (figure 11) of the variations in cavity volume observed
on the propeller. The discrepancy between the predicted and observed frequencies
is likely to be in part a result of inaccuracies in this measurement. In addition,
as noted in the initial observations of the instability cycle, there is also substantial
variation in the cavity volume within the tip vortices. While it is not known if the
tip vortex cavitation volume varies in response to fluctuating upstream pressures in
the same manner as the cavitation on the propeller blades, it remains possible that
the tip vortex cavitation contributes to the active nature of the propeller cavitation.
It is worth noting that an increase in the total cavitation volume participating in
the fluctuations during the instability cycle would in fact lead to an increase in
the cavitation compliance and therefore a decrease (equation (5.6)) in the predicted
instability frequency. Yet another possible explanation for the disrepancy is that
nonlinear effects produce a limit cycle frequency that is significantly smaller than the
prediction of the linear instability analysis.

The preceding analysis did not include any system resistances. Figure 13 shows the
effects on the simplified system of including tunnel resistances. The cavitation com-
pliance is evaluated including a component contributed by the tip vortex cavitation.
Three lines are drawn for cases in which the upstream and downstream resistances,
Rtu and Rtd, are assumed to be equal. The chosen values for the resistances are
characterized by a non-dimensional damping parameter,

ζ =
5RtK

3M
, (5.7)

where R−1
t = R−1

tu + R−1
td is an effective resistance based on the parallel combination

of the upstream and downstream resistances. This parameter represents a ratio of the
resistive effects opposing unstable behaviour to the dynamic characteristic driving the
instability, namely the quantity M/K .

It is apparent from figure 13 that the system impedance undergoes a dramatic
transition at ζ = 1. The well-defined trough transforms into a dramatic positive peak
in the real part of the system impedance. For ζ > 0 (for example, ζ = 1.25) the
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Figure 13. Effect of resistance on real part of system impedance, Z , for several values of the
parameter ζ (——), including the critical value of ζ = 1 (using Rtu = Rtd). Also shown is the effect
of unbalanced upstream and downstream resistances, namely Rtu/Rtd = 0.75 (– –) and 1.25 (· – ·)
(for ζ = 1.0).

real part of the system impedance becomes negative at higher frequencies, but the
amplitude of those negative values is several orders of magnitude lower than that of
the trough present when ζ < 1. For sufficiently high values of ζ, the real part of the
system impedance remains positive across all frequencies.

If the upstream and downstream resistances are not assumed equal, the behaviour
of the system impedance becomes significantly more complicated. Figure 13 also
shows the real part of the system impedance at various ratios of upstream to
downstream tunnel resistance. Despite the fact that all three curves are generated for
a damping value of ζ = 1.0, the case of a lesser upstream resistance results in unstable
behaviour while, in contrast, a greater upstream resistance results in comparatively
stable behaviour. Thus, the model predicts that unstable behaviour is favoured by a
relatively smaller upstream resistance.

As mentioned previously, the instability was seen to occur only when the propeller
was mounted downstream of the gearbox fairing. One seemingly plausible explanation
for this discrepancy is that the fairing introduces an asymmetric resistance within
the facility dynamics that promotes the instability. However, this explanation is
clearly not substantiated by the preceding analysis of the effect of unequal resist-
ances.

Another possible explanation for the discrepancy is the shedding of large-scale
structures (vortices) from the supporting strut. However, a study conducted (Dutt-
weiler 2000) to investigate the variation of the instability frequency with changing
test section velocity suggested, through consideration of the Strouhal vortex shedding
frequency, that the instability is not linked to vortex shedding. Thus the role of
the fairing is, as yet, unexplained. It could simply be that it introduces random
perturbations to the flow through the propeller which are amplified by the instability
mechanism.
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6. Conclusions
This paper has described an investigation of a previously unreported surge insta-

bility on a cavitating propeller mounted in a water tunnel. The cyclic behaviour of
the attached blade cavities has strong similarities to that of partial cavity oscillation
on single hydrofoils in that the cavity length oscillates between a configuration in
which the length is substantially less than the chord over almost all of the span and
one in which a significant fraction of the cavity near the tip is longer than the chord.
The reduced frequency of the instability is consistent with the partial cavity instability
on single foils. The amplitudes of the pressures generated are large and potentially
damaging to the surrounding structure.

To understand the nature of this instability and its source, separate investigations
of the cavitation dynamics and of the response of the water tunnel were undertaken.
It is demonstrated that the cavitation dynamics may be characterized by an approach
previously deployed during identification of the dynamics of cavitating pumps; quasi-
static observations of the parametric variations in the cavity volume are then used to
quantify the quantities known as the cavitation compliance and the mass flow gain
factor. The dynamic response of the tunnel is investigated by inserting known volume
oscillations by means of a piston device and a complete model of the linear cavitation
dynamics and the tunnel response is then constructed. This model demonstrates that
the instability is essentially driven by a postive mass flow gain factor. It predicts
instability characteristics (frequencies, etc.) which are mostly in accord with the
observations. However, some features of the instability remain unexplained, such as
the role of the supporting strut asymmetry; these may be a consequence of unidentified
dynamic features of the water tunnel.

Whether or not the instability could occur in the environment downstream of a ship
hull would require the construction and analysis of a dynamic model which included
both the cavitation characteristics utilized herein as well as a model for the response
of the surroundings to the volume oscillations. While the literature contains a number
of attempts to model the surroundings (see, for example, Huse 1972 and Weitendorf
1989) the authors do not know of any complete model of the type suggested here.
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